The Beneficial Applications of Low Level Laser Therapy

© Copyright 2002 by Dr. Morton Walker, D.P.M., USA

A medical experiment was conducted in a randomized, crossover, single-blind, placebo-controlled fashion on house painters, typists, computer operators, and other usual victims of carpal tunnel syndrome. The results were revealing and provided health professionals in North America, South America, Europe, and Asia proof that permanent relief for acute and chronic wrist pain is readily available.

Carpal Tunnel Syndrome (CTS), a common defect of the wrist and hand, is a disability affecting several million people in Western industrialized nations. It is caused by pressure on the middle nerve in the wrist’s carpal tunnel. The condition offers much pain and often prevents the sufferer from pursuing any occupation involving wrist movement. The syndrome is seen more often in women, especially in pregnant as well as menopausal women. Symptoms may result from a blow, swelling, a tumor, rheumatoid arthritis, or an overly small carpal tunnel that squeezes the nerve. The median (middle) nerve serves a person’s palm and thumb side of the hand. Pressure on the nerve causes multiple symptoms: weakness, pain when the thumb is bent toward the palm, as well as burning, tingling, and/or aching that may spread to the forearm and the shoulder. Weakness and wasting of muscles may occur from lack of wrist movement, getting in the way of full use of the thumb and fingers. Pain may be either infrequent or constant and is often most intense at night.

Now prolonged comfort is assured for sufferers of CTS because researchers in the Department of Neurology at the Boston University School of Medicine uncovered that Low Level Laser Therapy (LLLT) is highly effective in eliminating wrist pain completely. The pain-free results last for between one and three years. This medical school investigation involved just a small number, but it was convincing. Eleven people received red-beam laser therapy directed at acupuncture points along the painful hand and wrist. The true treatment was compared to a placebo or “sham” treatment which provided no therapeutic benefit. Both applications were painless, and patients could not tell which they were receiving because the affected hand was treated hanging behind a black curtain without the patient knowing if treatment devices were real or sham.

Proven by this July 2002 experiment is that the pain of carpal tunnel syndrome treated with a low-level laser directed at acupuncture points markedly reduces wrist pain or causes it to disappear altogether.

The application of acupuncture ordinarily involves placing fine needles at specific spots on the body’s surface. Chinese traditional medicine theory holds that such points or skin spots connect with energy pathways or meridians that run through the body, and acupuncture keeps this natural energy flow running smoothly.

Prior to the application of LLLT, usual treatment had included painkillers, braces, steroid injections into the wrist joint, and/or surgery to “release” the ligament that runs through the tunnel and puts pressure on nerves. Most of the existing treatments are expensive, may produce pain by themselves, could have side effects, and often end up not working or giving only temporary relief.
Injecting steroids, for example, removes pain for an average of just three months. Moreover, only 40 percent of the CTS patients who undergo surgery are eventually able to return to normal functioning. The Boston University researchers mentioned that in 1993, treating one case of CTS in California cost over $5,000 without surgery. A decade later the cost for such proposed correction by this conventional treatment has more than doubled.

For up to three years when the beneficial response to administering acupuncture using LLLT eventually wears off, this safe and effective treatment is taken again by the patient to achieve another long period of wrist comfort. Using low level laser therapy today, carpal tunnel syndrome patients can thus continue their usual occupations without experiencing any more pain in their wrists even under stress.¹

What Is Low Level Laser Therapy?

The word LASER, an acronym for Light Amplification by Stimulated Emission of Radiation, is the name of a device projecting intense radiation of the visible, ultraviolet, or infrared portions of the light spectrum. The laser instrument produces a very thin beam of light in which high energies are concentrated. The laser light, when reduced in its energy output to a low level, may be utilized for tissue healing and repair, cutting as in surgery, shrinking tumors, unblocking clogged arteries, eradicating infections, and other therapeutic purposes. For bringing about health enhancement, the application of these amazing beams of light is called “Low Level Laser Therapy.”²

In surgery, lasers can be used to operate on small areas of abnormality without damaging delicate surrounding tissue. For example, lasers are applicable for structural changes of the retina, to unblock coronary arteries narrowed by atheroma, and to remove certain types of birthmark (a nevus) on the skin. Different kinds of laser light—argon laser, diode laser, excimer laser, YAG laser—are put into service for operations on the cornea, lens capsule, and, as mentioned, the retina. Lasers are also applicable for the treatment of cervical intraepithelial neoplasia and in specialized form for endometrial ablation. Additionally, laser beams are advantageous as diagnostic tools; for instance, an instrument for measuring blood flow through skin tissue is known as the laser Doppler flowmeter.³

Because the amplification of light by the stimulated emission of radiation (the definition of a laser) occurs as an open system, it provokes completely new structure and sensitivity in the living tissue of an organism to which the light is beamed. The medical director of the Pain Clinic and Laser Center of Locarno, Switzerland, Zlatko Simunovic, M.D., F.M.H., writes: “Laser therapy [LLLT] is a natural and biological therapy, because even from early ages, man has considered the light of the Sun to be responsible for his health. Human kind simply cannot live without the light, a fact proved by evident lack of light in the sick cell.”⁴ Laser light restores health to just such an ailing cell.

How Low Level Lasers Operate

The stimulated emission of a laser is obtained by controlling the instrument’s energy in its excited state and introducing the correct radiation to trigger it. The laser’s excitation occurs from collisions of its atoms of light with electrons discharging from the instrument’s power source. Laser beam buildup occurs and photons pass through the instrument’s extraction mirror so that the laser beam gets reflected back into the laser’s active medium.⁵
Numerous technical details relating to lasers could be discussed, but these individual items are issues which interest only physicists, electrical engineers, and laser specialists. Hardly ever are medical consumers or even holistic health professionals (for whom this article has been published) interested in laser technology. They merely want to witness the beneficial effects of LLLT.

Although, this author could describe **monochromaticity**, a laser radiation property, the technology is so complex, no meaningful purpose would be served even by defining it. Or I might relate laser radiation properties to **coherence**, the stimulated emission mechanism through which the laser radiation is obtained. My intention, instead, is not to burden the reader with idiomatic technical language entailing laser information. Only, some laser terminology should be included here in case a term comes up elsewhere.

Thus there is **spatial coherence** by which two laser beams originate from two different points producing interference fringes. And there is **temporal coherence**, whereby the laser radiation being emitted takes place at the same point that another beam of radiation is emitted at a later time.

Then one may come upon **directivity**, another property of laser radiation wherein the laser’s radiation is confined within a beam which is propagating in space. Plus, the laser beam will have a certain **brightness** derived from the laser’s intensity which is affected by the number of photons emitted outside the laser optical cavity.

Most people know that a **photon** is a quantum of electromagnetic energy having both particle and wave properties; it has no charge or mass but possesses momentum and energy. Next there is **polarization**, a nonspecific property of laser light related its electromagnetic radiation with certain spatial distributions.

These, and several dozen other aspects of physics may be integrated into the study of laser light and its associated therapeutics, but they are overly scientific for the more simplified requirements of using LLLT beneficially.6

The Modern Day Visionary of Laser Therapeutics

Born in a South Dakota sod farmhouse with a birthing assist by his farther, growing up in surroundings having no indoor pumbing, no electricity, and with nature’s woodlands as his playground, the genius Larry Lytle, B.S., D.D.S., Ph.D. (in nutrition), has become a legend in his own time. Now at age 67, Dr. Lytle is the modern day visionary of laser therapeutics. Most of his waking hours are spent functioning as consultant and instructor/lecturer for a highly progressive laser device manufacturer. Even with this educator’s lectures being exceedingly well attended, he derives no income from the manufacturer’s distribution of laser instruments to medical consumers, health professionals, or any retail outlets.

Dr. Larry Lytle had been an immensely successful wholistic dentist, a profession from which he retired four years ago. Additionally this accomplished health professional performed as a Ph.D. nutritionist until low level laser therapy captured his imagination. It was then that he put into action his personal inventiveness to effectuate low level laser treatment. For the past ten years Dr. Lytle has been perfecting positive laser therapeutic responses to help people, and he owns patents for the legal protection of his inventions. Accordingly, benefits have come to humankind from the biological absorption, dispersion, refraction, reflection and other physiological reactions to laser light energy (please see Dr. Larry Lytle in Photograph 1.)
Descriptions of Four LLLT Instruments

Laser instruments are manufactured in a variety of shapes and sizes. Some are handheld as with cordless telephones; others are pencil-thin and aimed like flashlights. One hand-held laser, the Q100, incorporates four light-emitting diodes and four laser diodes with red and infrared laser outputs.

The light-emitting diode (LED) is a light source with a relatively narrow band. The LED is actually a semiconductor lamp which produces primarily red light emitting a wavelength of 660 nm. But some LEDs also emit yellow, green, or blue light. The laser diode is an electron tube of the high-vacuum type inserted into the laser instrument. It has a cold anode and a heated cathode, used as the rectifier of alternating current; it’s a demodulator.

The Q100 operates on rechargeable DC batteries and affords two settings, one that harmonizes the brain and heart and a second for several effects: healing tissue, reducing inflammation, and eliminating pain. Small and maneuverable, the Q100 may be applicable for surface injuries of domestic animals such as horses. It is useful for healing the traumatized animal’s cuts, bruises, burns, sprains, ringbone, navicular, pasterns, wind puffs, splints, stifles, and proud flesh. It can penetrate deeply for treatment of difficult problems such as bowed tendons, tendonitis, arthritis, and bone trauma (please see the horse’s healing leg in Photographs 2, 3 & 4).

The Q1000 laser instrument is implanted with 20 diodes clustered in a hand-held, ultra-portable, telephone-size unit and contains additional capabilities which furnish frequencies from 1 to 20,000 Hertz. It produces healing in a sort of “shot gun approach” to cover a large area of injury. It is computerized and may be reprogrammed at the factory to produce frequencies and power densities that are beneficial for specific health problems. Powered by 7.2 V intelligent Lithium-Ion batteries, the Q1000 laser delivers its multiple wavelengths, power settings and time intervals through several different modes. It contains more than twice the number of lights and lasers and a broader energy range than the Q100 so that the Q1000 harmonizes a wider range of therapies for animals and humans.

Much like the Q100, however, the Q1000 is used for the treatment of chronic pain and inflammatory conditions such as burns. The healing and pain-elimination effects of LLLT for human and animal burns, in fact, is fast and dramatic (please see its fast healing of a leg burn in Photographs 5, 6, 7, 8 & 9).

The 660-Enhancer is a 50 mW “red laser” used for acupuncture in place of needles, for stimulating trigger points, and for many dental application. This pencil-thin laser is powered by the Q1000.

The 808-Enhancer is a 500 mW “infra red” laser in a small hand-held probe the size of a large pen. The power of this infra-red laser has been noted for its beneficial result in controlling bone infections and stimulating bone growth. An FDA-approved laser of the 800-wave lengths are utilized for carpal tunnel syndrome as reported at the beginning of this article.
Class I, FDA-Registered and UL-Classified Lasers Are Safe

I have attended Dr. Lytle’s educational lectures delivered to laypersons and health care practitioners alike. He teaches about the effects of low level laser administration. When given as treatment for a dysfunctional body part, low level laser light emitted by Class I laser instruments such as the Q100, Q1000, or others variably called the Rotary Multiplex and the Resonator have no potential at all for harming the user or the recipient. These various Class I devices are registered with the US Food & Drug Administration, and they have received their classification based on research completed by Underwriters Laboratory (UL). They offer what the governmental agencies indicate is “non-significant risk (NSR).”

Unquestionably low level laser therapy is completely safe. (Please read the last subsection of this article about laser risks and adverse effects.) I personally own four low level laser instruments for administering therapy to myself, friends, and loved ones. These therapeutic lasers have been invented by Dr. Larry Lytle, who for me exemplifies a wholistic health visionary at the highest level. Projected for production is a television video which will cite his personal genius, along with other exceptional medical scientists and health care professionals who are “health visionaries.” Each of them is deserving of an American-type of Nobel prize.

The Physiological Repair Effects of LLLT

The physiological repair effects of low level laser therapy are achieved by the light’s re-energizing (repolarizing) injured and malfunctioning cell membranes. LLLT also increases the mitochondria’s energy output within the cell by more than 150 percent. The extra energy becomes a repair and restoration mechanism so that the damaged cell begins to thrive once again. This extra energy’s cellular repair is graphically shown for a small boy who fell off his bicycle (please see the series of three pictures depicted in Photograph 10).

Advantageous actions of low level laser therapy take place in all organs and tissues of the body for the creation of good cellular functioning once again. Listing their antipathological and prophysiological internal and external benefits would have me producing a very long series of human conditions and treatment results—maybe several hundred. I will furnish a mere handful here. They include:

- A reduction of pain by the body’s production of endorphins;
- The diminishing of inflammation from suppression of tissue excitation;
- The stopping of a tissue’s influx of fluids;
- The disappearance of swelling, redness, and heat;
- The elimination of pain;
- The elevation of lymphatic drainage;
- The increase of blood circulation;
- The flow of healing enzymes into a traumatized area;
- The measurable showing of up to 75 percent increase in enzymes;
- The spasm release of tight muscles (both smooth and striated) which had been creating chronic pain, joint stiffness, and decreased mobility;
- The speeding up of bone repair from the stimulation offered by fibroblastic and osteoblastic proliferation;
- The canceling wave effect of viruses, fungi, bacteria, and a variety of parasites so that they fail to survive as pathological organisms.
Since the biostimulative-regenerative, anti-inflammatory, and analgesic characteristics of low level laser therapy had begun during the past half-century, a massive number of laboratory and clinical studies have been conducted. Perhaps upwards of 2500 published pieces have appeared in the medical literature in the form of clinical journal articles, magazine articles, letters to the editor, official reports, lectures, books, and more. In the next section a smattering of four significant published items are cited to show the variety of LLLT applications for healing purposes.

Abstracted Articles Taken From Medical Literature Which Illustrate Healing With Low Level Laser Therapy

1. In the dental endodonture clinic of G.R. Sousa, DDS, M.S. Ribeiro, DDS, and E.B. Groth, DMD, 15 patients were treated for a total of 18 periapical lesions associated with the need for jaw bone repair. One group of 9 patients received endodontic treatment and/or periapical surgery. The second group of 6 were subjected to the same procedures but in addition their lesions were irradiated with low level laser light. LLLT was performed during 10 sessions with an interval of 72 hours between treatments. Bone regeneration was evaluated through X-ray examination. The results showed a significant bone repair improvement in the endodontic group of patients who had received LLLT. Their quick surgical healing occurred in half the time.7

2. Both clinically and thermographically, improvement was observed among some 40 patients suffering from Raynaud’s phenomenon after they received 10 sessions of LLLT distant irradiation during winter months. Digital blood flow was assessed and the subjective and objective parameters were significantly better upon evaluation after conclusion of this published clinical study.8

3. Of 60 patients between the ages of 20 and 65 years who were victimized by cervical osteoarthritis (COA), LLLT was applied for the condition’s relief. The people were randomized into two equal groups and given LLLT or a placebo laser. Patients in each COA group were investigated in a double-blind fashion without the doctors knowing who had received which type of application. The doctors evaluated patients for pain-related physical findings such as increased back muscle spasm, loss of spinal curvature, range of neck motion restriction before and after therapy. Functional improvements showed up significantly in the low level laser therapy group and not at all in the placebo group. From this and several dozen other clinical studies, it’s recognized that LLLT works well for back trouble involving arthritis and muscle spasm.9

4. Endovascular surgery (operations dealing with the interior of the blood vessels) has advanced enormously by the use of LLLT. Lasers are administered to treat peripheral vascular disease, which are diseases of the blood vessels of the extremities (especially those that interfere with blood flow) such as in atherosclerosis.

A prospective study was undertaken for 89 endovascular procedures performed during a one-year period to determine their effectiveness. They included 50 balloon angioplasties, 32 laser-assisted balloon angioplasties, and 7 atherectomies (removal of the atheromatous lining of the vessel). Balloon angioplasty involves a balloon-tipped catheter that’s threaded through the occluded vessel to the point of obstruction; the balloon tip is inflated and deflated several times to open the vessel. The indications for such surgery include intermittent claudication, weakness and cramps of the legs (occurs in 65.2 percent of patients); critical ischemia with loss of blood
supply (30.3 percent); and failure of a vascular bypass graft (4.5 percent). Immediate success was achieved in 89.8 percent of the endovascular surgical cases using LLLT. These excellent results immediately after operation are consistent with previous reported findings.

I possess about 400 reprints of clinical journal article abstracts which discuss more beneficial physiological effects of low level laser therapy. The vast majority of them offer glowing reports about laser light healing and only a tiny fraction are negative. LLLT is applicable and quite efficacious in veterinarian medicine too.

Risks and Adverse Effects Associated With LLLT

Some 2,500 controlled studies presented in as many medical/dental journal articles which have been carried out at university hospitals and private medical clinics, in dental practices, at veterinarian offices, at private and government-run laboratories, and in laser centers all over the world demonstrate positive effects of laser light on cellular and histological systems of people and their domestic animals. Veterinarian medicine is an especially active area of low level laser therapy application. Veterinarians, in fact, have carried out the majority of in vivo animal studies to test laser treatment before it is administered to human test subjects.

During the course of in vivo investigations both in the laboratory on animals and at the clinic level on people, certain risks and side effects of LLLT and its employment of visible light have been uncovered. For the Class I lasers that I described earlier in this article, there is no potential for eye damage according to published books and laser therapy experts I’ve consulted. Writing in their book, *Low Level Laser Therapy: Clinical Practice and Scientific Background*, the coauthors from Sweden, Jan Tuner and Lars Hode, warn: “A parallel [laser] light beam of small diameter is dangerous for the eyes. That’s because it can enter the pupil in its entirety and be focused by the eye’s lens to a spot with a diameter of hundredths of a millimeter. The entire [laser] light output is concentrated on this small area. With a 10 mW beam, the power density can be up to 12,000 W/cm². It is mandatory that no one should stare into a laser light. Shorter exposure time offers much less risk of injury, and the blinking reflex is good protection. Please be aware that the use of normal sunglasses rather than wearing true laser lens protectors tends to increase the risk of eye injury. That’s because the filtration mechanism of sunglasses is lower in the laser spectrum, and the darkness of the sunglasses makes the pupil dilate to let in more light. They provide a false sense of security. The laser beams of LLLT discussed previously are under 5 mW and considered safe.

The effects of LLLT on cancer cells in vitro have been studied, and it’s known that such abnormal cells can be stimulated to grow. In vivo, however, small malignant and benign tumors in rats treated with LLLT recede and completely disappear. The situation is the same for bacteria and viruses in culture. The in vitro cultured organisms are stimulated, but the infections of in vivo microorganisms disappear more quickly. The lasers for LLLT already discussed are harmonizing and not stimulating.

LLLT is used today in nearly every field of medicine and health. It’s not yet known how laser light can influence the immune system of oncological patients, but diseases of the lymph system, blood and arteries do receive benefits from the application of laser light. Although LLLT does not always obtain a 100 percent therapeutic response, it should be applied for the relief of pain and fast healing of wounds. Among the basic rules in nature is that “light is the source of life.” The quantum of light energy is a photon. Every living cell emits photons, known as biophotons. For this reason, LLLT is therapeutic without causing damage to the
human body. Laser light is an integral part of the natural physiology of mankind. It is a dependable healing modality.

Resource

For more information about low level laser therapy,

Visit www.laserinformation.com

Send your Email query to lasers@pobox.com

Telephone to corporate laser therapy consultant Dr. Larry Lytle, B.S., D.D.S., Ph.D. (Nutrition) at (605) 342-5669; FAX (650) 649-2642.

References

Photograph 1. Depicted is health visionary and laser consultant Larry Lytle, B.S., D.D.S., Ph.D. (Nutrition), who is world renown as an expert on low level laser therapy. Dr. Lytle holds patents for numerous modifications to laser instruments. He is the developer of low level laser theory and applications which have brought benefits and enriched the lives of people around the world.

Photograph 2. Seen here is the right rear leg of a brown mare injured by barbed wire. Infection followed by gangrene later set in. The veterinarian who had been consulted tried a variety of conventional treatments to heal the horse’s leg, but all of them failed. Discouraged by his lack of success, the veterinarian advised that the mare be “put down” (killed). Instead, the animal’s owner, an Amish farmer from South Bend, Indiana, used his Resonator laser over the entire wound surface each day for a few days. Then he applied low level laser therapy to the mare’s leg every other day, and finally weekly for a total of eight applications.

Photograph 3. As shown, the healed result of laser therapy was a huge scar that kept the mare limping and prevented her from being entered in “show” due to the scar’s unsightliness. Consequently, the farmer treated his horse’s scar with the Resonator laser once a week for three weeks, which allowed the hair to grow back into the scarred site.

Photograph 4. How is it possible that hair would grow again into a scarred area when almost any health professional will tell you that the regrowth of hair into scar tissue just does not happen? The answer is that the farmer’s Resonator laser delivered a correct amount of energy at the proper power density and thus re-energized the injured cell membranes in the scarred tissue. This energy reinforcement allowed the transport of nutrients to occur across the skin’s cellular membranes which, subsequently altered the tissue’s DNA (deoxyribonucleic acid). From such a healing action, the horse’s skin returned to normal and regrew hair. This mare was saved from being killed, return to “show” status, and, since the barbed-wire accident which befell her, has produced three foals.
INTRODUCTION

My interest in low level laser therapy (LLLT) arose from a presentation by Dr. Larry Lytle at the VSLS meeting in Washington, DC in the fall of 2002. Dr. Lytle introduced us to a modality of treatment using low intensity light energy (<500mW) that is non-invasive and complimentary in nature.

Low level laser energy is reported to provide physiological benefit without detrimental side effects. Positive changes and lack of side effects bolster owner perception of value for innovative, non-invasive treatment options. In fact, our clients perceive themselves as guardians rather than owners of companion animals. Treatments that are not reliant on pharmaceuticals appeal to caregivers today.

Low level laser therapy has been used in the treatment of several human and animal diseases (Ghamsari et al 1997; Lucroy and Edwards, 1999). Byrnes, in Dr. Anders’ laboratory at the Uniformed Services University of Health Sciences promoted regeneration of the corticospinal tract of rats using photobiomodulation (Byrnes et al, 2000). Her research suggests that LLLT inhibits inflammation and cell invasion of the spinal cord. In addition, they found that cutaneous wound healing in type II diabetic rats was accelerated with low power laser irradiation (Byrnes et al, 2000). Brosseau at Oxford has shown LLLT to provide short-term relief from pain and morning stiffness in humans with rheumatoid arthritis (Brosseau et al, 2002). This alternative, non-invasive treatment uses a light source that generates extremely pure light of wavelengths that are effective through photochemical reactions in cells rather than through a thermal effect.

There is a paucity of literature regarding LLLT in veterinary medicine. Several scientists and clinicians find the idea of LLLT promoting tissue repair and healing as unbelievable and view it with extreme skepticism (Enwemeka,1999, Bartels, 2002). At Greenland Animal Hospital, we use LLLT in an integrated approach to case management. Utilizing LLLT in conjunction with thorough diagnostics and pharmaceutical therapies has been valuable. While LLLT can be used as the sole patient therapy, we have achieved more success using it in conjunction with conventional western medicine.

The purpose of this paper is to document the use of LLLT for different illnesses of dogs and cats treated as sole patient therapy and in conjunction with traditional methods.

LASER PHYSICS AND PHYSIOLOGIC EFFECTS

It is not my intention to elucidate laser physics in this report. Readers can find authoritative materials describing laser-tissue interactions in other literature (Peavey, 2002; Jacques, 1992). It is, however, useful to briefly discuss the basic concept of low intensity light therapy.

Einstein first proposed the theory of Light Amplification by Stimulated Emission of Radiation (LASER) in 1917. Miaman engineered the first ruby laser in 1960. During the 1960’s, laser biophysics evolved whereby light-tissue and light–substance interactions were clarified (Crane, 2002). Today there are multiple types of lasers with several unique applications.

1 I appreciate the effort and invaluable assistance that my head technician, Sara A. Narus, LVT, provided to complete these cases.

2 Email:Leftydvmsattbi.com
Lasers convert one kind of energy (electrical) into another kind of energy (photonic or light energy). They then are capable of releasing energy in a focused manner to a desired source. When electrical current stimulates a specific medium or element, the atoms of that medium give off photons. Photons are packets of light energy. Laser light energy is one pure color (monochromatic) and coherent (synchronized or well ordered). Power density (measured in watts per centimeter squared), wavelength (measured in nanometers), and frequency (measured in Hertz) are critical to understanding laser energy. Power density is light concentration. Photons travel in waveform at different frequencies. Each photon thus, each waveform, is characterized by a different wavelength. Wavelengths in the visible and near infrared ranges are the most beneficial for LLLT. Each wavelength interacts with a given substance in a different way (Peavy, 2002). Low level lasers that we used are manufactured using computer-like chips grown from pure elements and combinations of pure elements (Wowapi, 2002).

Everything in nature, including, tissue cells, bacteria and viruses, has a unique frequency. Laser energy elicits effect by altering or shifting the frequency of cells. Biophotons are involved in cell communication through a process that is termed “ultra-weak cell radiation”. The cellular source of radiation is DNA in the nucleus. It is believed that malignant tumor cells lose their mutual light contact, resulting in increasing cellular disorder. Exogenous light energy is absorbed by means of the flavoprotein –metal-redox system. This “antenna pigement” forms a link in the respiratory chain within cellular mitochondria. Laser photons are transformed into cellular energy in the mitochondria where energy impulses lead to physiologic change. Laser light also causes proliferation of collagen threads and increases in cellular activity. (Petermann, 2000).

Physiologic effects of laser energy in the body are numerous. Reported effects of LLLT include: vasodilation, reduced blood pressure, improved capillary circulation, and increased endogenous opiate production (Petermann, 2003). Laser energy reduces pain and inflammation through bio and photo-stimulation of living cells. Sensory nerve production is slowed and resonant energy of tissue cells is restored. Low level laser energy stimulates the sodium potassium pumps in cell membranes, which enables transport of essential nutrients into cells to allow healing. In addition, bradykinin and leukotriene production is inhibited by low level laser energy (Wowapi, 2002).

EQUIPMENT

Lasers that we used for our study were purchased from a company based in South Dakota, USA called 2035, Inc. These lasers are multi-frequency resonating lasers with two or three programmed modes. Each mode is designed to re-energized different parts of anatomy. Mode 1 (M1) re-energizes muscles, ligaments, and tendons for healing. Mode 2 (M2) normalizes heart and brain cells. Mode 3 (M3) cycles through 29 different frequencies and is used on all organs, “unknown conditions”, and cancer. Two basic units, the Q1000 (grey) and the Q100 (black) exist. Q1000 produces 3.9 joules of energy per 3minute cycle. When attached to the Q1000, the 808-Enhancer will deliver 50 joules of energy to selected sites. There is a probe used for acupuncture that can be attached to the Q1000. The Q100 produces 1.3 joules of energy. Each unit was used for a specific disease or condition. Laser Assist Compound® is a dietary supplement that Dr. Lytle recommended as adjunct therapy. The product has a variety of nutritional ingredients, including Glucosamine Sulfates (<2900 mg/ounce), graviola, and co-enzyme Q10.
CASE STUDIES

CASE # 1: Feline Granulomatous Fungal Infection:

Magic: 10 year old, twenty three pound, neutered, male, diabetic cat with FLUTD

Magic had a non-healing wound on the left side of his nose. We tried topical treatment with Bactroderm® and then Tresaderm®. He improved initially with topical Tresaderm® application but the lesion never totally resolved. After one year of sporadic treatment, the owners were ready to be aggressive about finding a diagnosis. We debulked and ablated the mass with our CO₂ laser and sent off a biopsy. It was diagnosed as a granulomatous fungal infection. Treatment options were systemic antifungals or LLLT. The owners opted for LLLT as a first line of non-invasive therapy. Our treatment involved the Q1000 laser with the 808-Enhancer directed at the lesion for three minutes. We also added ½ teaspoon of laser assist compound to Magic’s diet. The cat was not cooperative so we changed to the Q1000 M1 every 72 hours for two weeks then one time weekly for 3 weeks. The lesion improved initially, but after one month of no treatment the lesion returned larger than before. At the second surgery, we performed a full thickness skin excision and sent tissue to a different lab for histopathology. It was identified as granulomatous fungal infection (Candida species). We put Magic on itraconazole (5mg/kg) every 12 hours for thirty days.

Assessment:

The lesion improved when we used LLLT. However, it returned when we stopped treatment. We were not using a specific frequency for Candida species, therefore, we were not optimizing the efficacy of LLLT. In addition, we had an uncooperative patient which made it difficult to keep the laser focused for the entire treatment period. The lesion is healing with itraconazole therapy. The cat still does not tolerate any type of medication or treatment very well. We do not know if continued LLLT at appropriate duration and frequency would resolve the lesion.

CASE # 2: Canine Submandibular Abscess

Casey: 8 year old, spayed female, Golden Retriever, in remission of Lymphosarcoma

Casey presented with a swelling of sudden onset under her chin. We were very concerned because of her history of Lymphosarcoma. Physical exam revealed a round 3 cm diameter, fluctuant, submandibular mass. Purulent fluid aspirated from the mass. Cytology revealed white and red blood cells too numerous to count and rare larger round cells. We excised the mass, sent a biopsy out for histopathology, sent a specimen for culture and sensitivity, and used LLLT. The mass had a thick capsule that was successfully excised with the CO₂ laser. We decided to have the wound heal by second intention. Pasteurella multocida and Corynebacterium species were isolated.

We applied the Q1000 M1 to the wound every 48 hours for 5 treatments. In addition, Casey took Baytril (68mg) orally every 12 hours.

Assessment:

The incision healed rapidly and was totally closed in seven days. No significant scar tissue was evident and the owners were thrilled with the use of non-invasive modern technology. Since we had a known pathogen that could be life threatening, I did not feel comfortable using LLLT as sole therapy in this case. It was excellent complimentary medicine.

CASE # 3: Chronic Nasal and Pododermatitis

Mr. Boots: 15 year old, neutered, male, cat, FIV positive

Mr. Boots came to us for a second opinion on chronic, painful, nasal and pododermatitis. He presented with an open sore on his nose and painful feet, which were more severe in the rear. We verified positive FIV status and started treatment with Acyclovir and L-Lysine. Mr. Boots went home with Malaseb® shampoo for frequent baths and soaks. Although he improved over two year period, Mr. Boots was never totally comfortable. Enrofloxacin, amoxicillin, and doxycycline made Mr. Boots vomit or become lethargic.
In November 2002, we used Q1000 M3 on all four feet for 3 minutes each session and on the nose. We also put Mr. Boots on clindamycin (50 mg) daily for 7 days. After three sessions, one every 48 hours, Mr. Boots was walking comfortably on four feet and not licking his nose. We have used LLLT monthly over the last two months as Mr. Boots has a flare-up of discomfort. Recently, we amputated P3 of three of the most severely affected toes with the CO2 laser. We applied LLLT (Q1000 M1) after surgery. Healing was uneventful. The owners reported that Mr. Boots is doing very well.

Assessment:

The owners felt that Mr. Boots is more comfortable than he has been in years. His feet and nose are free from lesions at this time. They attribute this to the addition of LLLT. However, given his FIV status, I would expect to see recurrent problems.

CASE # 4: Canine Lick Granuloma - Lymphosarcoma

Max: 12 year old, neutered, Chocolate Labrador, hypothyroid

Max presented with severe dry skin and generalized epidermal collarettes. He also had a two by six centimeter raised lick granuloma on his right flank. The owners tried home remedies including neosporin, for several days. They were not interested in surgery given Max’s age. Max was also severely arthritic in the rear quarters.

We treated the lesion with Q1000 M1 for three minutes every 48 hours for one week then one time weekly for three additional weeks. Max took Primor® (1200mg) daily for the first week. We also resonated his lumbosacral junction with Q1000 M1 and adjacent muscles with Q1000 M1 at thirty second intervals.

Max returned in two months with more generalized sores. We took a skin biopsy. The histopathological diagnosis was Cutaneous Lymphosarcoma.

Assessment:

Low level laser therapy worked well as sole therapy for the original lick granuloma. Changes were evident within one week of treatment. The owner did not return for two months, at which time Max came in because he had more epidermal collarettes. Laser therapy helped for a short time in the initial phases of this case. It did not cure cancer. We subsequently euthanized Max.

CASE # 5: Canine Femoral Head and Neck Excision (FHNE)

Mazie: 2 year old, spayed, female Labrador with Bilateral Hip Dysplasia

Mazie has bilateral hip dysplasia. We performed a unilateral FHNE in the fall of 2001. She returned home postoperatively with carprofen, and a glucosamine product. The owner watched her progress to normal function and decided to wait to perform surgery on the opposite side until Mazie showed signs of discomfort.

Approximately one year later, Mazie returned for surgery on the contralateral side. At this time we were offering LLLT as an adjunct to surgery. We prepared Mazie for surgery. Prior to surgical scrubbing we resonated her coxofemoral joint with Q1000 and 808-Enhancer for 3 minutes. Surgery was uneventful. Postoperatively, we resonated as prior to surgery. The following morning, we repeated our resonation, however, at this time we used Q1000 M1. Mazie was weight bearing as she left our hospital. She returned home with carprofen and glucosamine. Within 24 hours the owner called the hospital to tell us how well Mazie was doing and wondered if LLLT could have done so much. Ten days after surgery we removed sutures. Mazie was walking on all four limbs and had a small visible scar with significant hair regrowth.

Assessment:

Low level laser therapy did enhance wound healing and sped recovery in the case of FHNE.
CASE # 6: Azotemia and Perirenal Cyst in a Cat

Chill: 15 year old, spayed, cat

Chill presented for a second opinion on having anesthesia for dental cleaning. The previous veterinarian was concerned about putting an older cat under anesthesia. Pre-anesthetic blood values revealed mild Azotemia (BUN= 43.9; Creatinine= 2.76 ;). Phosphorous concentration was normal. Abdomenal radiographs revealed enlarged kidneys. Renal ultrasound revealed an active unilateral perirenal cyst with a suspected ruptured cyst remnant surrounding the contralateral kidney.

The owners wanted to clean Chill’s teeth but did not want to surgically remove the cyst. We decided to drain the large cyst by needle aspiration, perform dentistry, and resonate the kidneys. In addition, we used the acupuncture probe on a point in the right ear an on the back.

Chill did well during anesthesia and we were able to accomplish all procedures. As a follow-up we performed LLLT (Q1000 M3) every 48 hours for two weeks, then weekly for 6 weeks. Based on abdominal palpation, the cyst filled in one week but has been reducing in size over the last several weeks. Chill has been eating Purina NF and Pet-tinic® since diagnosis. Her owners report that she is acting like a kitten and doing things that she hasn’t done for many years. They are reluctant to stop LLLT.

Assessment:

It appears that a combination of diet, vitamin supplementation, and LLLT are enhancing the quality of life of this cat. The owners are excited believers in LLLT.

CASE # 7: Osteoarthritis, Urinary Incontinence, and Vestibular Dz

Brittany: 15 year old, spayed, female Brittany Spaniel

Brittany presented with a several year history of uncontrolled urinary incontinence. She recently was experiencing an arched back and rear limb weakness. She had been taking phenylpropanolamine for several years with some improvement at times. Screening blood panel and urinalysis revealed normal organ function with dilute urine. Radiographs revealed multiple areas of lumbar spondylosis.

We resonated L4 to L7 with Q1000 M1 for three minutes and adjacent epaxial muscles with Q100 M1 at thirty second intervals. We added DES 1mg daily for five days then weekly for five weeks. Brittany improved rapidly over the next several days.

Four months later, Brittany presented disoriented, with a head tilt to the left, horizontal nystagmus and one episode of vomiting. In addition, she was weak and unstable. Her blood panel was normal. Her symptoms were compatible with Canine Vestibular Disease. The owner asked if LLLT would be appropriate. We resonated the skull with Q1000 M2 in two locations for three minutes. Brittany went home on dexamethasone and Primor.

Her clinical signs improved within 24 hours. She was relatively normal after two weeks.

Assessment:

Low level laser therapy may enhance recovery from Vestibular disease and ease the pain of Osteoarthritis. It is not clear if LLLT helped to treat the urinary incontinence.

CASE #8: Obstipation and Osteoarthritis

Zac: 15 year old, neutered, male, Setter Mix

Zac presented three years ago with obstipation. His diet consisted of ice cream, chicken, and plenty of fresh water. We performed several enemas. Physical exam revealed a rectal mass with anal stricture and severe degenerative joint disease in his back and hips. Not knowing how long Zac would live, we attempted to manage him with dog food (Purina EN) and vetasyl capsules. The mass continued to grow. Veterinary surgeons attempted to remove the mass, but were only partially successful. Zac had monthly episodes of obstipation for 8 months.
Zac started LLLT in November of 2002. During our initial session we resonated his rectal area with Q1000 M3 and lumbar spine with Q1000 M1 for 3 minutes each. We also resonated his epaxial and semintendinosus/membranosus muscles at 30 second intervals with Q100 M1. We resonated his heart with Q1000 M2 for 3 minutes. This same technique was used every other day for two weeks, then one weekly for one month, then every other week for 2 months. He is currently coming for one session per month. Laser Assist Compound ® was started at one teaspoon per feeding.

Zac is not a cooperative patient so movement was and issue. Laser Assist Compound ® was not palatable. Zac has not had and enema for over six months. The owner feels that LLLT saved his dog’s life. Zac can now climb stairs and snow banks which he had not done for several years. He starts to slow down after about three weeks without LLLT.

Assessment:

The results in this case speak for themselves. Low level laser therapy has improved the quality of this dog’s life.

CASE #9: Osteosarcoma

Bailey: 4 year old, neutered, male, St. Bernard

Bailey was presented with a firm swelling in the right distal radius/ulna. Radiographs revealed lucent areas in the bone. A veterinary oncologist offered amputation and chemotherapy. The owner elected to euthanize Bailey when he seemed uncomfortable. After returning from Dr. Lytle’s presentation, we discussed LLLT with the owners. Realizing that cure was a very unrealistic, we proceeded to resonate Bailey with Q1000 M3 three times weekly for 60 days. Bailey ate 1 teaspoon of Laser Assist Compound every 12 hours.

There was no improvement with treatment. We euthanized Bailey when he became too painful to walk.

Assessment:

Low level laser therapy did not arrest or cure advanced Osteosarcoma.

CASE #10: Cervical Neck Pain

Molly: 10 year old, spayed, female Daschund

Molly presented with ventroflexion of her neck and yelped when the neck was manipulated. We resonated her neck with Q1000 M1 for 3 minutes in two locations and the corresponding epaxial muscles with Q100 for 30 seconds each. Because she lived over an hour from the hospital and this was a recurring problem for Molly, she went home with dexamethasone (.25 mg TID for 5 days, .25 mg SID for 5 days, then .25 mg every other morning) in the event that LLLT did not improve her condition.

There was no improvement with twenty-four hours so the owner used dexamethasone. The medication provided relief with four hours.

Assessment:

One LLLT did not help an acute episode of cervical neck pain. It is not clear if multiple treatments would have helped Molly.
SUMMARY

Low level laser therapy is an alternative to pharmaceutical intervention in veterinary medicine. Exact treatment protocols for veterinary applications have not been developed including, duration of treatment, appropriate wavelengths, and sites of application. Length of treatment will also have to be determined. Many dogs and cats move excessively while being resonated. Patient cooperation has to be addressed when evaluating the success of a low level energy program. Willingness and ability of owners to bring patients for frequent progress examinations will also be a factor.

Based on my experience with LLLT and the lack of side effects, there is enough evidence of potential benefit to warrant further study of low level energy for treatment of specific diseases in cats and dogs. Low level laser therapy is not the answer for every medical and surgical problem. There are cases in which LLLT did not appear to help the problem. Cost of treatment does not appear to be a factor. Clients are very ready and willing to use alternative approaches to traditional western methods.

REFERENCES

Petermann U, Laser Therapie in Veterinary Medicine. IVAS 26th World Congress, 2000. (23)26:08